
TIME-DEPENDENT SIMULATION OF INCOMPRESSIBLE FLOW IN A

TURBOPUMP USING OVERSET GRID APPROACH

Cetin Kiris, and Dochan Kwak

M.S. T27B, NAS Applications Branch
NASA Advanced Supercomputing (NAS) Division
NASA-Ames Research Center, Moffett Field, CA 94035

ABSTRACT

This paper reports the progress being made towards complete unsteady turbo-
pump simulation capability by using overset grid systems. A computational model
of a turbo-pump impeller is used as a test case for the performance evaluation of
the MPI, hybrid MPI/Open-MP, and MLP versions of the INS3D code. Relative
motion of the grid system for rotor-stator interaction was obtained by employing
overset grid techniques. Unsteady computations for a turbo-pump, which
contains 114 zones with 34.3 Million grid points, are performed on Origin 2000
systems at NASA Ames Research Center. The approach taken for these
simulations, and the performance of the parallel versions of the code are
presented.

INTRODUCTION

The motivation of this effort is based on two primary elements. First, the entire
turbo pump simulation intends to provide a computationai framework for the
design and analysis for the liquid rocket engine fuel supply system. This effort is
part of the High Performance Computing and Communications (HPCC)
advanced technology application projects. The second objective of this research
is to support the design of liquid rocket systems for the space transportation.
Since the space launch systems in the near future are likely to rely on liquid
rocket engines, increasing the efficiency and reliability of the engine components
is an important task. One of the major problems in the liquid rocket engine is to
understand the fluid dynamics of fuel and oxidizer flows from the fuel tank to
plume. Understanding the flow in the turbo pump through numerical simulation
will be of significant value toward finding a better design that is simpler yet more
efficient and robust with less manufacturing cost. Until recently, the pump design
process was not significantly different from that of decades ago. The current
semi-empirical turbomachinary design process does not account for the three-
dimensional (3-D) viscous phenomena in the pump flows. Some of these 3-D
viscous phenomena include wakes; the boundary layers in the hub, the shroud

and the blades; junction flows; and tip clearance flows. Even though
computational fluid dynamics (CFD) applications in turbines have been reported
widely in the literature, the applications in entire-pump simulations are quite
limited. The objective of this paper is to present, and evaluate a parallel
computational procedure that simulates the incompressible flow through the
entire turbo pump configuration.

A substantial computational time reduction for these 3D unsteady flow
simulations is required to reduce design cycle time of the pumps. Part of this
speed up will be due to enhancements in computer hardware platforms. The
remaining portion of the speed-up will be contributed by advances in algorithms
and by efficient parallel implementations. The following section outlines the initial
effort and steps taken in order to reach this speed-up.

NUMERICAL METHOD

The present computations are performed utilizing the INS3D computer code,
which solves the incompressible Navier-Stokes equations for both steady-state
and unsteady flows. The numerical solution of the incompressible Navier-Stokes
equations requires special attention in order to satisfy the divergence-free
constraint on the velocity field because the incompressible formulation does not
yield the pressure field explicitly from the equation of state or through the
continuity equation. One way to avoid the numerical difficulty originated by the
elliptic nature of the problem is to use an artificial compressibility method,

1
developed by Chorin. The artificial compressibility algorithm, which introduces a
time-derivative of the pressure term into the continuity equation; the elliptic-
parabolic type partial differential equations are transformed into the hyperbolic-
parabolic type. A family of flow solvers has been developed 2-3based on this
algorithm. Since the convective terms of the resulting equations are hyperbolic,
upwind differencing can be applied to these terms. The current versions,
designated as INS3D code, use Roe's flux-difference splitting 4. The third and

fifth-order upwind differencing used here is an implementation of a class of high-
accuracy flux-differencing schemes for the compressible flow equations. To
obtain time-accurate solutions, the equations are iterated to convergence in
pseudo-time for each physical time step until the divergence of the velocity field
has been reduced below a specified tolerance value. The total number of sub-
iteration required varies depending on the problem, time step size and the
artificial compressibility parameter used, and typically ranges from 10 to 30 sub-
iterations. The matrix equation is solved iteratively by using a non-factored
Gauss-Seidel type line-relaxation scheme s, which maintains stability and allows a
large pseudo-time step to be taken.

Details of the numerical method can be found in Refs. 2-3. The GMRES scheme

has also been utilized for the solution of the resulting matrix equation s. Computer
memory requirement for the flow solver INS3D with line-relaxation is 35 times the
number of grid points in words, and with GMRES-ILU(0) scheme is 220 times the
number of grid points in words. When a fast converging scheme, such as a

GMRES-ILU(O) solver, was implemented into the artificial compressibility
method, previous computations showed that reasonable agreement was
obtained between computed results and experimental data. The line-relaxation
scheme in artificial compressibility method could be very expensive for time
accurate computations and could lead to erroneous solutions if incompressibility
is not enforced in each physical time step.

TURBOPUMPINDUCER

MassFlow: 9093 GPM

Re: 7.99e+7

• ";i_t ..

| eo

,8

Goome_ SurfacePressure

Figure 1. Geometry and surface pressure for a pump inducer.

APPROACH AND COMPUTATIONAL MODELS

The geometry for the liquid oxygen pump has various rotating and stationary
components, such as inducer, stators, kicker, and hydraulic turbine, where the
flow is extremely unsteady. Figure 1 shows the geometry and computed surface
pressure of the inducer from steady-state components analysis. When rotating
and stationary parts are included, time-dependent simulations need to be carried
out due to unsteady interactions.

To handle the geometric complexity, an overset grid approach is used. The
overset structured grid approach to flow simulation has been utilized to solve a
variety of problems in aerospace, marine, biomedical and meteorological
applications. Flow regimes can range from simple steady flows as that of a
commercial aircraft, to unsteady three-dimensional flows with bodies in relative
motion as in the case of turbopump configurations. A geometrically complex body
is decomposed into a number of simple grid components, as shown in figure 2.
The freedom to allow neighboring grids to overlap arbitrarily implies these grids
can be created independently from each other and each grid is typically of high
quality and nearly orthogonal. Connectivity between neighboring grids is

established by interpolation at the grid outer boundaries. Addition of new
components to the system and simulating arbitrary relative motion between
multiple bodies are achieved by establishing new connectivity without disturbing
the existing grids. Scalability on parallel compute platforms is naturally
accomplished by the already decomposed grid system. For certain problems, it is
more efficient to gather the grids into groups of approximately equal sizes for
parallel processing.

Iri4

hub

md

Figure 2. Overset grid system for the impeller long blade section with tip
clearance

Shroud

Surface

(7) (37) (] (].3) (4)

r Stator eUel r '1 Stator I

Puml_
Impeller Hy&aulic Kicker Inducer

Turbine

Hub

8urfiu:e

Blades

Figure 3. A pump model and steps taken in the simulation procedure.

In order to compute the flow on grids with moving boundaries, the overset grid
scheme in OVERFLOW-D;' code is incorporated with the INS3D solver that new
connectivity data is obtained at each time step. The overlapped grid scheme
allows sub-domains move relative to each other, and provides a general flexibility
when the boundary movement creates large displacements. Figure 3 shows the
model for boost pump andthe steps taken in the simulation procedure. The
numbers in figure 3 indicate the number of the blades in each section. The
computational grid has been generated by using the OVERGRID 8 software.
OVERGRID is a unified graphical interface for performing overset grid
generation. The software contains general grid manipulation capabilities as well
as modules that are specifically targeted for efficient creation of overlapping
grids. General grid utilities include functions for grid transformation, redistribution,
smoothing, concatenation, extraction, extrapolation, projection, and many others.
Functions especially useful for overset grids include feature curve extraction,
hyperbolic and algebraic surface grid generation, hyperbolic volume grid
generation, and Cartesian box grid generation. Visualization is achieved using
OpenGL while widgets are constructed with Tcl/Tk. The software is portable
between various platforms from UNIX workstations to personal computers.

In order to demonstrate the current unsteady solution capability, the SSME
shuttle upgrade pump configuration has been selected. Figure 4 shows the
geometry of the test rig for this pump being tested at NASA-MSFC facilities. In
this particular configuration, the SSME impeller is unshrouded.

Figure 4. Geometry of SSME-rigl shuttle upgrade pump impeller

The computational grid for the inlet guide vanes, impeller and diffuser sections of
the SSME-rigl configuration are shown in figures 5,6 and 7, respectively.

.r
'ql •

Figure 5. Computational grid of SSME-rigl inlet guide vanes with 17 zones, and
5.5 Million grid points.

Figure 6. Computational grid of SSME impeller with 60 zones, and 19.2 Million
grid points.

Figure 7. Computational grid of SSME-rigl diffuser with 24 zones, and 6.5
Million grid points.

Pressure

o.oo0

4.0¢1

4.1,15

-41.194

4.242

-.0.291

Figure 8. Computed surface pressure for SSME-HPFT impeller.

COMPUTED RESULTS

Computed results are obtained for 2.8 Million and 19.2 Million grid points SSME
impeller models. Figure 8 shows computed surface pressure of the shrouded
SSME impeller. The performance of the two approaches in obtaining multi-level
parallelism of the INS3D code is reported in this section. The first approach is
hybrid MPJ/OpenMP and the second approach is Multi Level Parallelism (MLP)
developed at NASA-Ames Research Center. The first approach is obtained by
using massage-passing interface (MPI) for inter-zone parallelism, and by using
OpenMP directives for intra-zone parallelism. INS3D-MPI 9 is based on the
explicit massage-passing interface across MPI groups and is designed for coarse
grain parallelism. The primary strategy is to distribute the zones across a set of
processors. During the iteration, all the processors would exchange boundary
condition data between processors whose zones shared interfaces with zones on
other processors. A simple master-worker architecture was selected because it is
relatively simple to implement and it is a common architecture for parallel CFD
applications. All I/O was performed by master MPI process and data was
distributed to the workers. After the initialization phase is complete, the program
begins its main iteration loop.

The SSME impeller model with 24 zones, and total grid points of 2.8 Million is
used as a test case for the coarse grain INS3D-MPI code. For this version of the
code, the number of zones in the computational model limits the maximum
number of CPU count. Figure 9 shows floating point counts per second for this
computation on SGI Origin 2000 platform. The average speedup, as compared to
the linear speedup, is about 65% for 24 processors. It should be noted that the
number of MPI groups reported in this paper always include the master MPI
process. For the first four processors, very good performance is obtained. When
the number of CPU count is increased further, the performance of the code is
decreased due to the load balancing issues. In order to obtain fine grain
parallelism, OpenMP directives are utilized lo. Figure 10 shows time (in seconds)
required per time integration step versus number of processors from the hybrid
parallel code. It should be noted that the "time per iteration" reported in this paper
includes the time obtaining Ax=b linear system of equations and the time solving
this particular system of equations for the entire grid system. In other words, the
iteration term is used for the physical time step, not for the iteration of linear
equation solver. It also should be noted that the number of implicit line relaxation
sweeps is kept same at each time step. The cases for 4, 12, and 24 MPI groups
were plotted in figure 10. For each MPI group, various numbers of threads, such
as 1,2, 4, 8, and 16, were used. The number of CPU count is equal the number
of threads multiplied by the number of MPI groups. When number of threads is
increased, the performance of the code slows down because the grid size for
each zone is relatively small for higher number of threads. This is shown in figure
12.

1505

IO::X:)-

O

_t

Figure 9.

INS3D-MPI

iiiiiiiiilliiii
0 _ I0 15 _'20

No. _ CPU'

INS3D-MPI performance on the SGI O2K, SSME-HPFT Impeller.

When the problem size is increased from 2.8 Million grid points to 19.2 Million
grid points, the SSME impeller has 60 zones where the smallest zone has 74K
grid points and the largest zone has 996K grid points. Figure 12 shows the effect
of MPI groups on the performance of the code when one OpenMP thread is
used. A good load balancing is obtained up to 20 MPI groups. When more than
20 MPI groups are employed, no more improvements in the performance of the

code is observed. The number of OpenMP threads is increased to 2, 4, 6, 10,
and 15 for the same MPI groups. These cases are plotted in figure 13 and figure

15. Figure 14 shows time per iteration versus total CPU count, and figure 14
shows the cases for various OpenMP threads. The best performance was
obtained for 20 MPI groups. In figure 13, the effect of load balancing can be seen
for 30 MPI groups. The OpenMP directives show very similar speed-up for 20
and 30 MPI groups (see figure 14).

1III I I I I 1111 t

lilt 2.eM Polnts II

-_H+4-°- 1zMRgroupsH
I [o!l --&-- 24 MR groups H

t Ilil_, ! !!!!'° I11"_.J. I 111 I _J

, I i i l I

4 6 10 20 30 40 100

Number of ClaUs

Figure 10. Time per iteration step for various MPI groups (INS3D MPI/OpenMP).

I I i L I 2.eM Points
L_.____J _-_up,

OC 100 ____i__ 12 MP[_ grOUpS

_E___-__--&-" 24 MPI groups

_. '°
3O

w_'_" 20 _-__ i__-'_ 10

1 2 3 4 6 10

OpenMP Threads per MPI Group

Figure 11. Time per iteration step versus OpenMP threads per MPI group.

5ooo ,r I r _ _rrf I _ I
4000 P _ + ; _'' ' , '

=xm \

t looo I

i m
+-- [Ipo

1 2 3 4 6 10 20 30

Number of CPUs

Figure 12. Performance for various MPI groups when one OpenMP thread is

used (SSME impeller 19.2 Million grid).

600
BOO

c 400
O
,= 300
m
Ik,

e

o 100

5O
i'_ 40

3O

2O

I i i uI!I+_\

+ iii

p + +

.... i] t 4 I

I J I

lilt
t II]

I i I i I

a 10 :20

19.2M Points

l-
l- -ll-- 12 MR groups L

I --AL--20 MPI groups I

L,I _N. ' . - I

! 1 : ,

I I I I II!I"A-'_"_J!

30 40 100 200 300

Number of CPUs

Figure 13. INS3D-MPI/OpenMP performance versus CPU counts for Origin
2000.

o IO0

= soSO
I:: 40

3O

2O
1 2 3 4 6 1Q

OpenMP Threads per MPI Group

Figure 14. INS3D-MPI/OpenMP performance versus OpenMP threads for

various MPI groups.

1 2 3 4 6 10 20 30

Number of CPUs

Figure 15. OpenMP performance for two different linear solvers.

MLP Process I
Common/locel/ee, l:_

Jm.PProcess 2
Common Ilocel/ a_,l_

Common/global/ x,y,z

.Figure 16. Shared memory MLP organization for NAS-MLP 11

_QO

3OO

100

O
Q

6O
• 50

._E 40
1--

3O

2O
20 30 40 100 200 300

Number of CPUs

Figure 17. INS3D-MLP performance versus CPU counts for Origin 2000.

Figure 15 shows the effect of OpenMP threads for implicit Gauss-Seidel line-
relaxation scheme and GMRES-ILU(0) scheme. Four Gauss-Seidel sweeps were
performed for line-relaxation scheme, and 20 directional searches were
performed for GMRES solver. The OpenMP directives show better speed-up for
GMRES solver due to nested loop effect in oblique planes.

The second approach in Multi-Level Parallelism (MLP) is obtained by using NAS-
MLP 11routines developed by Taft for the OVERFLOW code. The shared memory

#,v

MLP technique developed at NASA Ames Research Center has been
incorporated into the INS3D code. This approach differs from the MPI/OpenMP
approach in a fundamental way in that it does not use messaging at all. All data
communication at the coarsest and finest level is accomplished via direct
memory referencing instructions. This approach also provides a simpler
mechanism for converting legacy code, such as INS3D, then MPI. For shared
memory MLP, the coarsest level parallelism is supplied by spawning of
independent processes via the standard UNIX fork. The advantage of the UNIX
fork over MPI procedure is that the user does not have to change the initialization
section of the large production code. Shared memory MLP is inserted into INS3D
in a very similar way that Taft inserts MLP into OVERFLOW code. Library of
routines are used to initiate forks, to establish shared memory arenas, and to
provide synchronization primitives. The shared memory organization for INS3D is
shown in figure 16. The boundary data for the overset grid system is archived in
the shared memory arena by each process. Other processes access the data
from the arena as needed. Figure 17 shows INS3D-MLP performance versus
CPU count for 19.2 Million-grid points SSME impeller model. GMRES-ILU(0)
linear solver was used for these computations. The MLP version of code shows
73% of the linear speed-up performance. When MLP performance is compared
with MPI/OpenMP performance (figure 13, 20 MPI groups), 19% more speed up
is observed by using MLP version of the code. This comparison can be seen in
figure 18. It should be noted that this comparison is preliminary since the further
improvements in the fine-grain parallelization of the MLP code are currently
underway.

O
im

L-

L--

O
o

E
Im

I.-

30o

200 -.

too

6o

50

40

30

L_I I I 1 I ! I l1 I

A_ 19.2M Points

...... _--_- -[3- MPI-OpenMP Hybrid

"_r---A-- NAS-MLP

\ : !

I \I

i

I, I

iii Di ,
IL \,,e, i "

Iii, |

10 2o IO0 20O
I

30 40

Number ol CPUs

Figure 18. Comparison of INS3D-MPI/OpenMP and INS3D-MLP performance.

SUMMARY

An incompressible flow solver in steady and time-accurate formulations has been
utilized for parallel turbo-pump computations. Grid systems and numerical
procedures are outlined for unsteady turbo pump simulations. Results from 2.8
Million and 19.2 Million grid points SSME impeller models are presented for the
performance evaluations of the INS3D-MPI/OpenMP and INS3D-MLP versions of
the code. SSME impeller model with 60 zones showed that up to 20 MPI groups
hybrid code showed good scalability. OpenMP directives were more effective for
GMRES(ILU) solver than line-relaxation scheme. Shared memory MLP version of
the code was developed by using NAS-MLP routines. The SSME impeller
computations showed very good scalability for the MLP version.

ACKNOWLEDGEMENTS

Authors are grateful to Tom Faulkner and Jennifer Dacles Mariani for providing
the coarse grain INS3D-MPI version of the code, to Henry Jin for his support and
valuable ideas and discussions in OpenMP directives, and to James R. Taft for
providing NAS-MLP routines.

REFERENCES

1. Chorin, A., J., "A Numerical Method for Solving Incompressible Viscous Flow
Problems" Journal of Computational Physics, Vol. 2, pp. 12-26, 1967.

2. Kwak, D., Chang, J. L C., Shanks, S. P., and Chakravarthy, S., "A Three-
Dimensional Incompressible Navier-Stokes Flow Solver Using Primitive
Variables," AIAA Journal, Vol. 24, No. 3, pp. 390-396, 1977.

3. Rogers, S. E., Kwak, D. and Kids, C., "Numerical Solution of the
Incompressible Navier-Stokes Equations for Steady and Time-Dependent
Problems," AIAA Journal, Vol. 29, No. 4, pp. 603-610, 1991.

4. Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes," J. of Comp. Phys., Vol. 43, pp. 357-372 1981.

5. MacCormack, R., W., "Current Status of Numerical Solutions of the Navier-
Stokes Equations," AIAA Paper No. 85-0032, 1985.

6. Rogers, S. E., "A Comparison of Implicit Schemes for the Incompressible
Navier-Stokes Equations and Artificial Compressibility," AIAA Journal, Vol.
33, No. 10, Oct. 1995.

7. Meakin, Robert L., "Composite Overset Structured Grids," Handbook of Grid
Generation, CRC Press, Eds. Thompson, Soni, Weatherill, 1998.

8. Chan, W. M., OVERGRID -- A Unified Overset Grid Generation Graphical
Interface, to appear in Journal of Grid Generation, 2000.

9. Faulkner, T., and Mariani, J., "'MPI Parallelization of the Incompressible
Navier-Stokes Solver (INS3D). http://www.nas.nasa.qov/-faulkner/home.html

10. H. Jin, M. Frumkin and J. Yan, "Automatic Generation of OpenMP Directives
and Its Application to Computational Fluid Dynamics Codes," in the

r

Proceeding of the Third Intemational Symposium on High Performance
Computing, Tokyo, Japan, Oct. 16-18, 2000.

11 .Taft, J. R., Performance of the OVERFLOW-MLP and LAURA-MLP CFD
Codes and the NASA Ames 512 CPU Origin Systems," HPCC/CAS 2000
Workshop, NASA Ames Reseamh Center, 2000.

